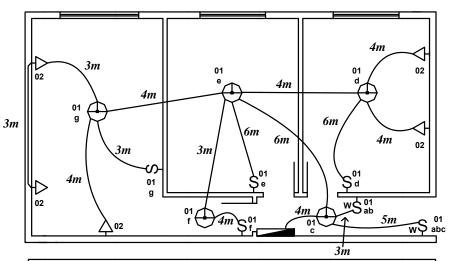
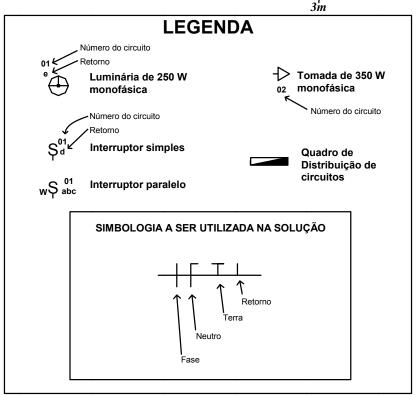


CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO




ENGENHARIA ELÉTRICA

CADERNO DE QUESTÕES

2009

1^a QUESTÃO Valor: 1,0

Na figura, tem-se uma planta baixa, onde é apresentado o traçado dos eletrodutos com os seus respectivos comprimentos (já considerando os trechos de subidas e descidas) e os pontos de luz e força.

Valor: 1,0

Além dos dados e informações constantes na figura, abaixo estão apresentadas as demais características da instalação e as tabelas para os dimensionamentos.

• tensão fase-neutro: 100 V.

condutores: cobre isolados.

• temperatura ambiente: 30° C.

isolação: PVC.

eletrodutos: PVC de seção circular embutidos na parede.

• fator de potência das cargas: 1.

bitola mínima dos circuitos:

o luz: 1,5 mm².

o força: 2,5 mm².

tabelas:

Tabela 1. Capacidade de condução de corrente para temperatura ambiente de 30° C, em ampères, para cabos passando por eletrodutos com seção circular embutidos na parede.

Seções nominais [mm²]	Circuito com 2 condutores [A]	Circuito com 3 condutores [A]
1,0	13,5	12
1,5	17,5	15,5
2,5	24	21
4,0	32	28
6,0	41	36
10,0	57	50
16,0	76	68
25,0	101	89
35,0	125	111
50,0	151	134

Tabela 2. Fatores de correção para temperaturas ambientes diferentes de 30°C para linhas não subterrâneas.

Temperatura (°C)	Isolação PVC	Isolação XLPE
10	1,22	1,15
15	1,17	1,12
20	1,12	1,08
25	1,06	1,04
35	0,94	0,96
40	0,87	0,91
45	0,79	0,87
50	0,71	0,82

Tabela 3. Fatores de correção para agrupamento de um ou mais circuitos instalados em eletroduto.

Disposição dos		Fatores de correção						
•	Número de circuitos							
cabos	1 2 3 4 5 6 7 8							
Contidos em	1,00	0,80	0,70	0,65	0,60	0,55	0,55	0,5
eletroduto								

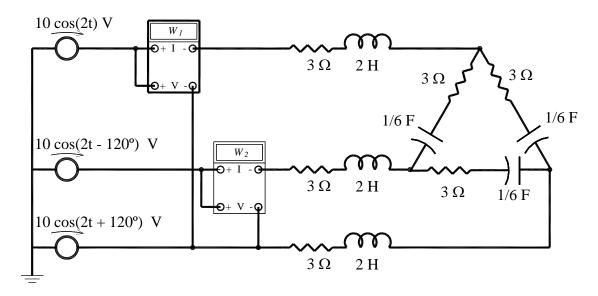
Tabela 4. Queda de Tensão em V/A.km

Seção Nominal	minal Eletroduto não magnético				
(mm²)	Circuito monofásico	Circuito trifásico			
1,5	27,6	23,9			
2,5	16,9	14,7			
4,0	10,6	9,15			
6,0	7,07	6,14			
10,0	4,23	3,67			
16,0	2,68	2,33			
25,0	1,71	1,49			
35,0	1,25	1,09			
50,0	0,94	0,82			

Tabela 5. Correntes convencionais de atuação, de não atuação e tempos convencionais para disjuntores

Corrente nominal ou de ajuste	Corrente convencional de não atuação	Corrente convencional de atuação	Tempo convencional (h)
<i>I</i> _N ≤ 63 A	1,05	1,30	1
<i>I_N</i> > 63 A	1,05	1,25	2

Pede-se:


- a) o traçado dos circuitos pelos eletrodutos constantes da planta baixa, também constante no caderno de soluções, sabendo que o esquema de aterramento é o TN-S;
- b) o dimensionamento dos dois circuitos pelos critérios de:
 - capacidade de condução de corrente;
 - queda de tensão, admitindo-se uma queda máxima de 2,0% nos circuitos terminais.
- c) a proteção dos circuitos pelo critério da sobrecorrente, considerando que o dispositivo de proteção deve atuar com segurança dentro do tempo convencional fixado para correntes não superiores a 1,45 I_Z , em que I_Z é a capacidade máxima de condução do condutor nas condições de instalação.

Valor: 1,0

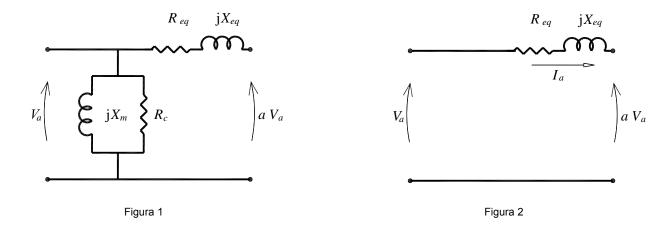
- a) o equivalente monofásico;
- b) a potência real total consumida pelo sistema;
- c) as leituras dos wattímetros W_1 e W_2 ;

Para o circuito trifásico da figura, encontre:

d) a potência reativa trifásica do sistema, a partir das leituras encontradas no item c.

3ª QUESTÃO Valor: 1,0

Com relação aos ensaios "a vazio" e "de curto-circuito" de um transformador monofásico de 20 kVA, 10 kV / 250 V, 60 Hz, pede-se:


- a) descrever a metodologia para a execução do ensaio "a vazio", indicando, a partir do modelo do transformador apresentado na Figura 1, as grandezas obtidas a partir deste ensaio;
- b) descrever a metodologia para a execução do ensaio "de curto-circuito", indicando, a partir do modelo do transformador apresentado na Figura 1, as grandezas obtidas a partir deste ensaio;
- c) determinar os valores de R_c , X_m R_{eq} e X_{eq} (referidas para o lado de alta tensão), as perdas no núcleo do transformador e as perdas em seus enrolamentos, tendo por base os dados levantados por meio dos ensaios apresentados na Tabela 1 e o modelo de transformador apresentado na Figura 1;
- d) esboçar o diagrama fasorial das quedas de tensão em R_{eq} , jX_{eq} e as tensões V_a e aV_a , onde a é a relação de transformação do transformador. Utilize o modelo simplificado do transformador, apresentado na Figura 2, e considere que o mesmo alimenta uma carga capacitiva que demanda uma corrente elétrica I_a , defasada de um ângulo ϕ em relação à tensão terminal do gerador aV_a .

Considere:

- $\sqrt{2} = 1,4$;
- $\sqrt{3} = 1,7.$

Tabela 1 – Leitura dos ensaios no transformador

Ensaios				
"a vazio"	"de curto-circuito"			
V = 10 kV	V = 200 V			
<i>I</i> = 0,25 A	<i>I</i> = 2 A			
P = 500 W	P = 200 W			

4ª QUESTÃO Valor: 1,0

Numa Organização Militar (OM), a demanda máxima atual é de 1150 kVA. A tensão de fornecimento de energia elétrica da OM é 13,8 kV (média tensão). Na instalação existe uma subestação de transformação com dois transformadores ligados em paralelo:

- Transformador A: S_a = 500 kVA nominais e reatância X_a = 3,2%;
- Transformador B: S_b = 750 kVA nominais e reatância X_b = 3,0%.

As dependências desta OM serão submetidas a uma reforma, objetivando atender a uma nova destinação. Em consequência, você é chamado para verificar se a atual subestação de transformação é adequada às novas atividades e dos equipamentos a serem instalados. Pela análise de quartéis similares àquele que ocupará as instalações prediais, sabe-se que a demanda será de 1700 kVA. O Tenente-Coronel Jorge Augusto sugere substituir o transformador de 500 kVA (trafo A) por um transformador (trafo C) disponível com as seguintes características:

• Transformador C: S_c = 1000 kVA nominais e reatância X_c = 4,5%.

A frequência e as tensões nominais (no primário e secundário) do trafo C são idênticas às dos transformadores A e B. As instalações físicas da subestação possuem dimensões compatíveis, e podem ser feitas todas as substituições de proteções, condutores e demais elementos para a correta instalação do transformador de 1000 kVA. Assim, o problema da demanda se resolveria apenas com a substituição sugerida.

Valor: 1,0

transformadores, a troca sugerida é tecnicamente viável? Fundamente suas respostas.

Com base na futura demanda (1700 kVA) e analisando as características descritas dos

5ª QUESTÃO Valor: 1,0

Em uma Estação de Bombeamento de Água (EBA), encontram-se instaladas, somente, as seguintes cargas:

- 01 (uma) carga resistiva trifásica, de potência 50 kW;
- 02 (dois) motores trifásicos, de potência mecânica 150 HP cada um, ambos sendo solicitados em sua potência mecânica nominal.

Considere que as cargas acima estejam permanentemente conectadas a um transformador trifásico, de potência 300 kVA, instalado na subestação da EBA.

Nesta configuração, o transformador da EBA vem operando em regime de sobrecarga da ordem de 10% da sua potência nominal.

Objetivando aumentar a perspectiva de vida útil do transformador, o Diretor-Técnico da EBA decidiu que não mais seria permitida qualquer operação do transformador em regime de sobrecarga. Diante do acima exposto:

- a) elabore uma linha de ação, a fim de atender à decisão da direção da EBA. Apresente a memória de cálculo da solução proposta;
- b) determine o rendimento dos motores;
- c) determine o fator de potência dos motores.

Considere que:

- o medidor de reativos instalado na subestação indica um consumo mensal de 99 MVAr.h;
- o regime de funcionamento das cargas n\u00e3o pode ser alterado;
- as cargas devem ser mantidas, não havendo possibilidade de substituição das mesmas;
- 1 HP = 0,75 kW;
- 1 mês = 30 dias.

6ª QUESTÃO Valor: 1,0

Um grupo gerador é formado por um motor diesel acoplado a um gerador elétrico. Uma chave de transferência faz a passagem da alimentação da rede elétrica para o grupo gerador e vice-e-versa. A fim de propiciar a transferência automática rede elétrica — grupo gerador, elabore o Grafcet de controle simplificado com o comportamento da Tabela 1, e as considerações determinadas nas Tabelas 2 e figuras 1 e 2.

Tabela 1 – Especificação do comportamento do sistema de controle

Passo	Situação	Comportamento
	Rede elétrica funcionando,	Se a rede elétrica apresentar falha, e assim
1	motor desligado e chave na	permanecer por mais que T_I unidades de tempo,
'	posição "rede"	então ligar o motor e ir para o passo 2. Caso
		contrário permanecer neste passo.
	Rede elétrica em falha, motor	Se a rede elétrica permanecer em falha por mais
	ligado e chave na posição	que T_2 unidades de tempo, então passar a chave
2	"rede"	para a posição "gerador" e ir para o passo 3. Se a
		rede elétrica voltar a funcionar antes que T_2
		unidades de tempo, então ir para o passo 4.
	Rede elétrica em falha, motor	Se a rede elétrica voltar a funcionar, e assim
	ligado e chave na posição	permanecer por mais que T_3 unidades de tempo,
3	"gerador"	então passar a chave para a posição "rede" e ir
		para o passo 4. Caso contrário permanecer neste
		passo.
	Rede elétrica funcionando,	Se a rede elétrica permanecer funcionando por
	motor ligado e chave na	mais que T_4 unidades de tempo, então desligar o
4	posição "rede"	motor e ir para o passo 1. Se a rede elétrica
		apresentar falha antes de T_4 unidades de tempo, ir
		para o passo 2.

Considerações:

Tabela 2 – Variáveis booleanas a serem usadas no sistema de controle

Símbolo	Descrição	Funcionamento
L	Indicador de falha da energia elétrica	L=1: rede elétrica funcionando
	-	L=0: falha da rede elétrica
M	Liga/Desliga o motor	M=1: liga o motor
		M=0: desliga o motor
K	Liga/Desliga a chave	L=1: chave na posição "gerador"
		L=0: chave na posição "rede"
C_i	Variáveis auxiliares (i = 1n)	C_i =1: condição verdadeira
		C_i =0: condição falsa

Notação gráfica para o Grafcet:

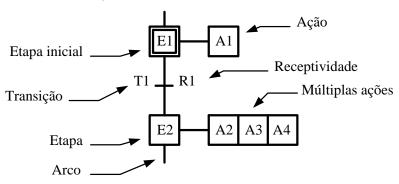
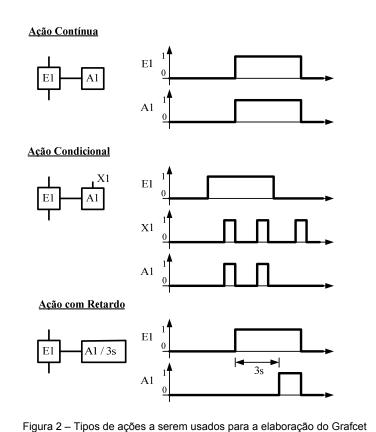



Figura 1 – Padrões gráficos a serem usados para a elaboração do Grafcet

rigura 2 Tipos de agoco a serem abados para a classifação do Grafoct

7^a QUESTÃO Valor: 1,0

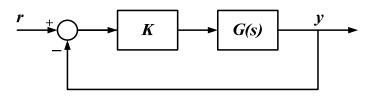
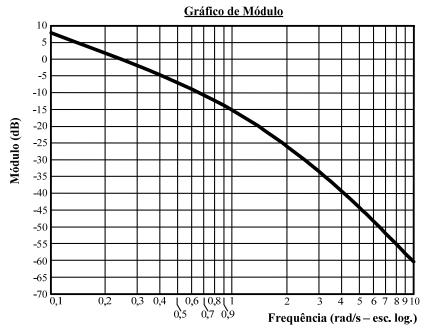


Figura 1

Uma planta com função de transferência G(s) está submetida a uma malha de controle de realimentação unitária conforme a Figura 1. A função G(s) é caracterizada pelos diagramas de Bode de módulo (dB) e de fase (graus) apresentados na Figura 2. Considere que a planta é do tipo I e que


Valor: 1,0

a faixa de frequência representada nos gráficos de Bode contém todas as frequências relativas a pólos e zeros da planta.

Determine:

- a) os valores de K real que fazem o sistema em malha fechada ser estável;
- b) o valor de K para o qual a margem de fase é 45° ;
- c) o valor do erro de estado estacionário para a resposta à rampa unitária, utilizando o valor de K encontrado no item b.

Resolva graficamente esta questão, utilizando para isso, os diagramas da Figura 2, que também se encontram no caderno de solução.

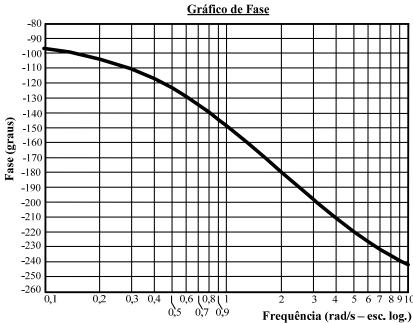
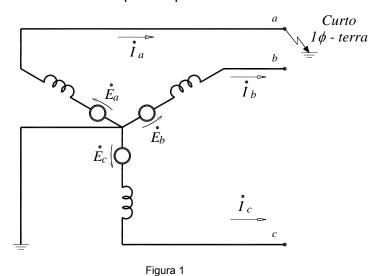
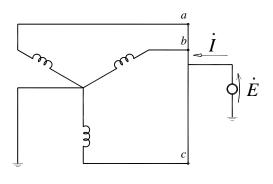


Figura 2

8^a QUESTÃO Valor: 1,0

Considere um gerador síncrono de pólos salientes com as seguintes características: armadura conectada em estrela, operação "a vazio" e tensões nominais. Supondo a ocorrência de um curto-circuito franco entre a fase A e o terra, de acordo com a Figura 1, determine:


- a) as correntes de sequência positiva, negativa e zero da máquina relativas as fases A;
- b) a corrente de neutro;
- c) as tensões de sequência positiva, negativa e zero no terminal da máquina relativas à fase A.


Dados:

- potência nominal: 30 MVA;
- tensão: 15 kV;
- frequência: f = 60 Hz;
- reatância subtransitória de eixo direto: $Xd''=2,25 \Omega$;
- reatância de sequência negativa: X_2 = 3,375 Ω .

Observações:

- forneça as respostas em pu nas bases nominais da máquina;
- a reatância de sequência zero foi obtida a partir de ensaio, conforme observado na Figura 2. Nesta figura, observa-se que a corrente \dot{I} nos terminais da fonte monofásica é 3 kA, quando a mesma foi ajustada para $|\dot{E}|$ = 750 V. O enrolamento de campo encontra-se em curto, girando na velocidade síncrona no sentido da sequência positiva.

Valor: 1,0

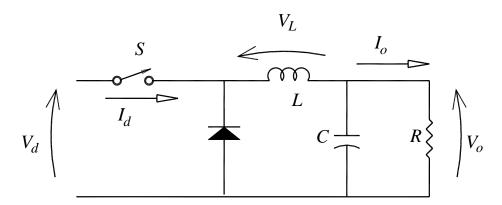
Figura 2

9^a QUESTÃO Valor: 1,0

Considere um conversor CC-CC abaixador ("step down"), conforme a figura. Considerando todos os componentes ideais e que o conversor opera no limite entre a continuidade e a descontinuidade, pede-se:

- a) o esboço das formas de onda da corrente $i_d(t)$ de entrada, da corrente $i_L(t)$ no indutor e da tensão $v_L(t)$ no indutor;
- b) o valor da tensão de saída média V_o ;
- c) os valores médios da corrente de entrada I_d e da corrente de saída I_o ;
- d) o ripple da corrente no indutor.

Dados:


• tensão de saída: $v_o(t) \approx V_o$

• ciclo de trabalho: D= 0,5

fequência de chaveamento: f_s = 20 kHz

• tensão de entrada: V_d = 10 V

• indutância: *L* = 1mH

10^a QUESTÃO Valor: 1,0

Nas figuras 1 e 2 são apresentadas as curvas de demanda, em dias úteis e feriados/fins de semana, de um determinado aquartelamento.

Analisando os gráficos apresentados nas figuras 1 e 2, e utilizando os valores que constam nas tabelas 1, 2, 3 e 4, determine a estrutura tarifária ideal para o aquartelamento em foco, que resulte na maior economia no período de um mês. Caso seja aplicável, calcule os valores a serem contratados. Fundamente suas respostas.

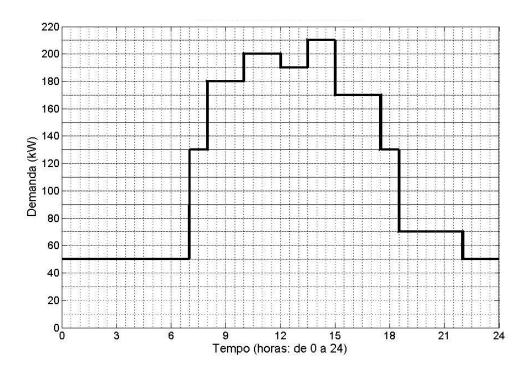


Figura 1 - Curva de Demada: dias úteis

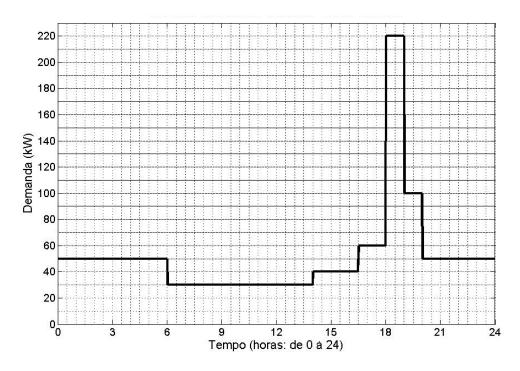


Figura 2: Curva de Demanda: feriados e fins de semana

Tabela 1: Estrutura Convencional (valor final, incluindo impostos)

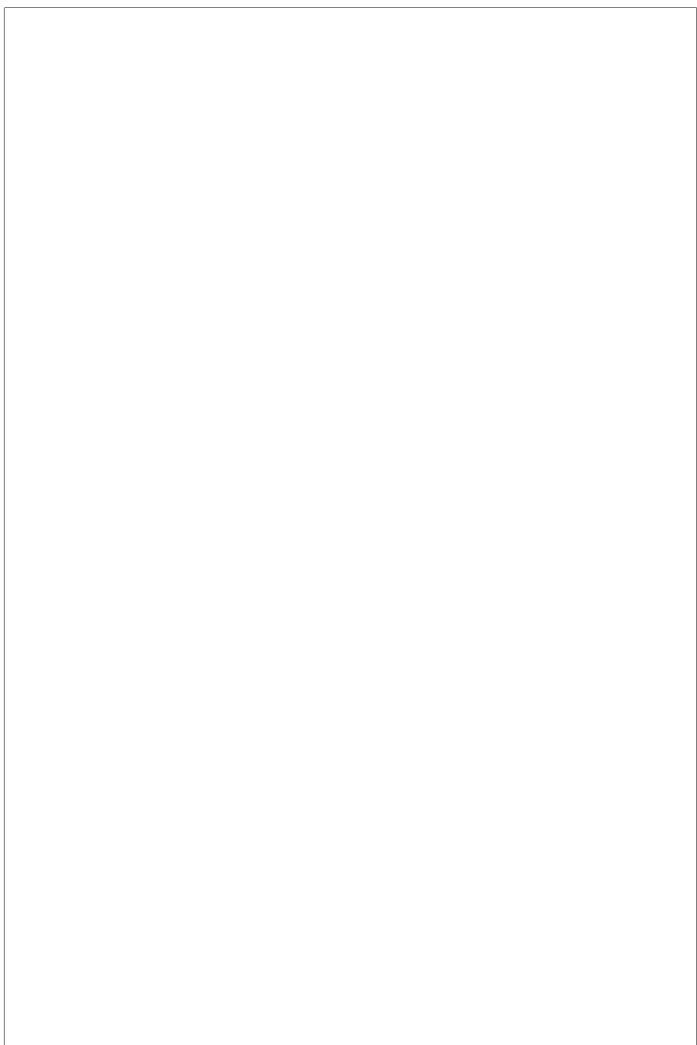
Nível de tensão	Nível de tensão Demanda R\$/kW	
AS	50,00	200,00

Tabela 2: Estrutura Horo-Sazonal Verde (valor final, incluindo impostos)

Nível	Demanda	Demanda de			R\$/MWh		
de		ultrapassagem			Fora de Ponta		
tensão	F	R\$/kW	Seca	Úmida	Seca	Úmida	
AS	15,00	50,00	1200,00	1100,00	150,00	130,00	

Tabela 3: Estrutura Horo-Sazonal Azul (valor final, incluindo impostos)

	Den	nanda	Demanda de ultra- passagem R\$/kW		Consumo R\$/MWh			
Nível de tensão		ianda 6/kW			Ponta		Fora de Ponta	
terisao	Ponta	Fora de Ponta	Ponta	Fora de Ponta	Seca	Úmida	Seca	Úmida
AS	50,00	15,00	140,00	50,00	250,00	200,00	150,00	130,00


Tabela 4: Consumo de Energia Elétrica

Intervalo de Horas	Consumo em Feriados e Fins de semana [kWh]	Consumo em Dias Úteis [kWh]
0 – 6	300	300
6 – 12	180	940
12 – 18	250	1090
18 – 24	520	410
Total	1250	2740

Observações:

- o horário de ponta considerado pela concessionária local se inicia às 18 horas;
- em seus cálculos, considere o mês com 30 dias: 21 dias úteis e 9 dias de feriados e finais de semana;
- para calcular áreas nas figuras, note que: os valores da demanda são múltiplos de 10 kW; todas as alterações nos valores da demanda ocorrem em intervalos múltiplos de 30 minutos; e ambos os gráficos não se alteram ao longo do ano.

