

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO CÁLCULO

CADERNO DE QUESTÕES

2016

1^a QUESTÃO Valor: 1,00

Sejam f e g duas funções definidas no conjunto dos reais tais que:

$$f(x) = \frac{x+|x|}{2}$$
 e $g(x) = \begin{cases} x^2, & \text{se } x < 0 \\ x, & \text{se } x \ge 0 \end{cases}$

Determine os pontos de descontinuidade das funções h(x) e h'(x), onde $h(x) = (f \circ g)(x)$.

2ª QUESTÃO Valor: 1,00

Considerando o conjunto dos reais, determine a(s) abscissa(s) do(s) ponto(s) de inflexão da função $f(x) = arc \operatorname{sech} x$. Justifique as ideias apresentadas por meio de cálculos e argumentações pertinentes.

3ª QUESTÃO Valor: 1,00

Calcule a integral a seguir:

$$\int_{-1}^{0} \frac{x+2}{x^2+2x+3} \ dx$$

4ª QUESTÃO

Valor: 1,00

Determine o valor da área da região delimitada pelos gráficos das funções $f(x) = 8x^2 - 6\sqrt{2}x$ e $g(x) = 2\sqrt{3}x + 1$, e que está à direita da reta x = 0 e à esquerda da reta x = 3/2.

5^a QUESTÃO Valor: 1,00

Sejam as funções $f(x) = 6x - x^2$ e $g(x) = x^2 - 4x + 8$. Considere a função m(x) definida como

$$m(x) = \begin{cases} f(x), & se \ f(x) > g(x) \\ g(x), & se \ f(x) \le g(x) \end{cases}$$

Determine a equação da reta r que tangencia o gráfico da função f(x) em um ponto $(x_0, f(x_0))$, com $1 \le x_0 \le 4$, de forma que a área da região compreendida entre a função m(x) e as retas r, x = 1 e x = 4 seja a menor possível.

6ª QUESTÃO Valor: 1,00

Considere, conforme descrito a seguir, a função f(x) e os vetores \vec{u} , \vec{v} , e \vec{w} , os quais são definidos no espaço tridimensional e são não-coplanares:

$$f(x) = (sen x)^{3/2}$$

$$\vec{u} = A\vec{i} + \vec{k}$$

$$\vec{v} = 2\vec{i} + 3\vec{j} + \vec{k}$$

$$\vec{w} = -\vec{i} + \vec{k}$$

O volume do paralelepípedo com arestas \vec{u} , \vec{v} , e \vec{w} possui valor V_1 . O volume do sólido obtido pela rotação, em torno do eixo x, da função f(x), no intervalo de 0 a $\pi/3$, tem valor V_2 . Qual deve ser o valor do escalar A para que V_1 seja igual a V_2 ?

7ª QUESTÃO Valor: 1,00

Seja $\alpha: \mathbb{R} \to \mathbb{R}^3$ uma curva diferenciável até terceira ordem. Prove que, se $\alpha'(t) \neq 0$, $\forall t \in \mathbb{R}$, e se a curvatura $\kappa(t) \neq 0$, $\forall t \in \mathbb{R}$, então tal curvatura é dada pelo valor absoluto da derivada do ângulo $\theta(s)$ que o vetor $T(s) = (cos\theta, sen\theta)$ forma com o eixo OX, se for tomada como parametrização o comprimento de arco.

8^a QUESTÃO Valor: 1,00

Dê as expressões para as derivadas parciais de f(x, y), onde:

$$f(x,y) = \int_{yx^2}^{xy^2} e^{t^2} \sqrt{1 + sen^2 t} \, dt$$

9^a QUESTÃO Valor: 1,00

Seja P o plano tangente à superfície

$$z^2 - 2z - x^2 - 2y^2 = -2$$

no ponto (3, -2, 5).

Determine a equação do plano tangente Q à mesma superfície mas em outro ponto dela tal que Q seja paralelo ao plano P.

10 ^a QUESTÃO	Valor: 1,00
Uma função diferenciável $f(x, y)$ tem, no ponto $(1,1)$, derivada direcional igual a	3 na direção
$3\vec{i} + 4\vec{j}$, e tem no mesmo ponto derivada direcional igual a -1 na direção $4\vec{i} - 3$	
valor máximo da derivada direcional de $f(x,y)$ neste ponto (1,1).	
valor maximo da derivada direcional de $f(x,y)$ neste ponto (1,1).	